riversongs Posted April 17 Report Share Posted April 17 Free Download Udemy - DevOps to MLOps Bootcamp Build & Deploy MLSystems End-2-EndPublished: 4/2025Created by: Gourav Shah,Vivian Aranha • 140.000+ StudentsMP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 ChLevel: All | Genre: eLearning | Language: English | Duration: 67 Lectures ( 8h 57m ) | Size: 5.24 GBFrom Data to Deployment - Learn MLOps by Building a Real-World Machine Learning Project with MLflow, Docker, KubernetesWhat you'll learnBuild end-to-end Machine Learning pipelines with MLOps best practicesUnderstand and implement ML lifecycle from data engineering to model deploymentSet up MLFlow for experiment tracking and model versioningPackage and serve models using FastAPI and DockerAutomate workflows using GitHub Actions for CI pipelinesDeploy inference infrastructure on Kubernetes using KINDUse Streamlit for building lightweight ML web interfacesLearn GitOps-based CD pipelines using ArgoCDServe models in production using Seldon CoreMonitor models with Prometheus and Grafana for production insightsUnderstand handoff workflows between Data Science, ML Engineering, and DevOpsBuild foundational skills to transition from DevOps to MLOps rolesRequirementsBasic knowledge of DevOps and DockerFamiliarity with Git and GitHubSome exposure to Python (used for scripting and ML workflows)Prior understanding of CI/CD concepts is helpful but not mandatoryA machine with minimum 8GB RAM and Docker installed for running local labsDescriptionThis hands-on bootcamp is designed to help DevOps Engineers and infrastructure professionals transition into the growing field of MLOps. With AI/ML rapidly becoming an integral part of modern applications, MLOps has emerged as the critical bridge between machine learning models and production systems.In this course, you will work on a real-world regression use case - predicting house prices - and take it all the way from data processing to production deployment on Kubernetes. You'll start by setting up your environment using Docker and MLFlow for tracking experiments. You'll understand the machine learning lifecycle and get hands-on experience with data engineering, feature engineering, and model experimentation using Jupyter notebooks.Next, you'll package the model with FastAPI and deploy it alongside a Streamlit-based UI. You'll write GitHub Actions workflows to automate your ML pipeline for CI and use DockerHub to push your model containers.In the later stages, you'll build a scalable inference infrastructure using Kubernetes, expose services, and connect frontends and backends using service discovery. You'll explore production-grade model serving with Seldon Core and monitor your deployments with Prometheus and Grafana dashboards.Finally, you'll explore GitOps-based continuous delivery using ArgoCD to manage and deploy changes to your Kubernetes cluster in a clean and automated way.By the end of this course, you'll be equipped with the knowledge and hands-on experience to operate and automate machine learning workflows using DevOps practices - making you job-ready for MLOps and AI Platform Engineering roles.Who this course is for DevOps Engineers looking to break into the field of MLOpsPlatform Engineers and SREs supporting ML teamsCloud Engineers wanting to understand ML workflows and productionizationDevelopers transitioning into ML Engineering or Data Engineering rolesAnyone curious about how real-world ML systems are deployed and scaledHomepage: https://www.udemy.com/course/devops-to-mlops-bootcamp/AusFilehttps://ausfile.com/i9pkkhk861gv/gqodt.DevOps.to.MLOps.Bootcamp.Build..Deploy.MLSystems.End2End.part1.rar.htmlhttps://ausfile.com/r9wh654jaiky/gqodt.DevOps.to.MLOps.Bootcamp.Build..Deploy.MLSystems.End2End.part2.rar.htmlhttps://ausfile.com/xsl09hw9l3dq/gqodt.DevOps.to.MLOps.Bootcamp.Build..Deploy.MLSystems.End2End.part3.rar.htmlhttps://ausfile.com/e8wk2granuba/gqodt.DevOps.to.MLOps.Bootcamp.Build..Deploy.MLSystems.End2End.part4.rar.htmlhttps://ausfile.com/n5g95mdajm5d/gqodt.DevOps.to.MLOps.Bootcamp.Build..Deploy.MLSystems.End2End.part5.rar.htmlhttps://ausfile.com/uotses9uuhk5/gqodt.DevOps.to.MLOps.Bootcamp.Build..Deploy.MLSystems.End2End.part6.rar.htmlRapidgator Links Downloadhttps://rg.to/file/70557aa1347678f503d4c073f3f4c9ac/gqodt.DevOps.to.MLOps.Bootcamp.Build..Deploy.MLSystems.End2End.part1.rar.htmlhttps://rg.to/file/9933cfa13a93f02f5f7b388565f6345e/gqodt.DevOps.to.MLOps.Bootcamp.Build..Deploy.MLSystems.End2End.part2.rar.htmlhttps://rg.to/file/993d0e1f5e2e1c07bfa6522fcb6a3045/gqodt.DevOps.to.MLOps.Bootcamp.Build..Deploy.MLSystems.End2End.part3.rar.htmlhttps://rg.to/file/4eebeb519328babb759428c0f249883e/gqodt.DevOps.to.MLOps.Bootcamp.Build..Deploy.MLSystems.End2End.part4.rar.htmlhttps://rg.to/file/36242b766cc51aae0716c07684ea7d65/gqodt.DevOps.to.MLOps.Bootcamp.Build..Deploy.MLSystems.End2End.part5.rar.htmlhttps://rg.to/file/87fc4bd1458dd0b80ce1ff25c0c910d4/gqodt.DevOps.to.MLOps.Bootcamp.Build..Deploy.MLSystems.End2End.part6.rar.htmlFikper Links Downloadhttps://fikper.com/Qx7kHieDYj/gqodt.DevOps.to.MLOps.Bootcamp.Build..Deploy.MLSystems.End2End.part1.rar.htmlhttps://fikper.com/opNetyhMmX/gqodt.DevOps.to.MLOps.Bootcamp.Build..Deploy.MLSystems.End2End.part2.rar.htmlhttps://fikper.com/OW5ADjS0ei/gqodt.DevOps.to.MLOps.Bootcamp.Build..Deploy.MLSystems.End2End.part3.rar.htmlhttps://fikper.com/EWc34V8u1S/gqodt.DevOps.to.MLOps.Bootcamp.Build..Deploy.MLSystems.End2End.part4.rar.htmlhttps://fikper.com/OTAyIeSIyZ/gqodt.DevOps.to.MLOps.Bootcamp.Build..Deploy.MLSystems.End2End.part5.rar.htmlhttps://fikper.com/8WId7TPUNF/gqodt.DevOps.to.MLOps.Bootcamp.Build..Deploy.MLSystems.End2End.part6.rar.htmlNo Password - Links are Interchangeable Link to comment Share on other sites More sharing options...
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now