riversongs Posted November 23, 2024 Report Share Posted November 23, 2024 Free Download Udemy - Applied Bayesian Analysis With RPublished 11/2024MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHzLanguage: English | Size: 494.88 MB | Duration: 1h 12mAn accessible introduction to Bayesian statistical modelingWhat you'll learnLearn the difference between frequentist and bayesian approachesGain confidence with the bayesian workflow in RLearn how to specify a variety of Bayesian modelsLeverage bayesian regression for predictive modelingRequirementsBasic familiarity with R and statistical inferenceDescriptionThis course provides a comprehensive, hands-on approach to Bayesian statistics, focusing on fundamental concepts and practical applications using R. Designed for beginners and those with some statistical background, this course will guide you through the core principles of Bayesian analysis, allowing you to understand and apply these methods to real-world data.Course StructureLecture 1: Why Bayes? Introduction and WelcomeWe start with a fundamental question: Why Bayesian statistics? This lecture introduces the advantages of Bayesian thinking, contrasting it with frequentist methods to highlight how Bayesian analysis provides a flexible, intuitive approach to data. This session sets the stage for understanding the Bayesian perspective and what you can expect to gain from this course.Lecture 2: R Setup for Bayesian StatisticsIn this session, we'll set up R for Bayesian analysis, covering essential packages and libraries, and walk through basic commands for data manipulation and visualization. By the end, you'll be equipped with the tools needed to dive into Bayesian modeling.Lecture 3: The Bayesian Trinity: Priors, Likelihood, and PosteriorsHere, we explore the three central components of Bayesian analysis: priors, likelihood, and posteriors. We'll discuss how these elements interact to shape Bayesian inference and will use R to visualize how prior beliefs combine with data to form posterior distributions.Lecture 4: Bayesian Regression in RThis lecture delves into Bayesian regression, covering linear models in a Bayesian framework. You'll learn how to specify priors, compute posterior distributions, and interpret results, building on classical regression knowledge to gain a Bayesian perspective.Lecture 5: Logistic Regression and PredictionsExpanding on regression techniques, this session introduces Bayesian logistic regression, ideal for binary outcomes and classification. You'll learn to make probabilistic predictions and understand uncertainty, essential for interpreting results in Bayesian analysis.Lecture 6: Diagnostics and VisualizationDiagnostics are critical for ensuring model reliability. This lecture covers methods for evaluating model fit, assessing convergence, and visualizing posterior distributions. We'll use R's plotting tools to gain insight into model behavior, helping you detect and address potential issues.Lecture 7: Practical Tips and ConclusionsIn our final lecture, we'll discuss practical tips for successful Bayesian analysis, including choosing priors, understanding model limitations, and interpreting results. We'll review key takeaways and best practices, equipping you with a well-rounded foundation to apply Bayesian methods confidently.This course is designed to be interactive, providing hands-on exercises to reinforce concepts and develop practical skills in Bayesian statistics using R. By the end, you'll have the tools and knowledge to apply Bayesian thinking to real-world data analysis challenges confidently. Welcome, and let's begin our Bayesian journey!OverviewSection 1: IntroductionLecture 1 Why Bayes? Introduction and WelcomeLecture 2 Bayes TheoremLecture 3 Bayesian Priors in Detail and a Little About SamplingLecture 4 Bayesian Regression in RLecture 5 Logistic Regression and PredictionsLecture 6 Diagnostics and ValidationLecture 7 Practical Tips and ConclusionsResearchers and analysts seeking to learn applied statistical modelingHomepagehttps://www.udemy.com/course/applied-bayesian-analysis-with-r/Download ( Rapidgator )https://rg.to/file/1b8fe4c3ca7ab8fd66f9d700e44c722a/kvvzs.Applied.Bayesian.Analysis.With.R.rar.htmlFikperhttps://fikper.com/Z3cTjuc2XX/kvvzs.Applied.Bayesian.Analysis.With.R.rar.htmlNo Password - Links are Interchangeable Link to comment Share on other sites More sharing options...
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now