PQueroO Posted November 16, 2012 Report Share Posted November 16, 2012 Llego a una solución, pero no es la respuesta del ejercicio, son dos ejercicios de derivadas, hace tiempo que no estudiaba, falta carbón, si me pueden hechar una mano genial. Gracias La respuesta en la primera es 101, y el segundo ejercicio 162 Link to comment Share on other sites More sharing options...
funkemonks Posted November 17, 2012 Report Share Posted November 17, 2012 (edited) a) f'(x)=kx^(k-1)*e^{(k^2+k)x}+x^k*e^{(k^2+k)x}*(k^2+k)=k*x^k*e^{x(k^2+k)}*[x^(-1)+(k+1) ]entonces:A=kB=kC=k+1 Resultado=k^2+k+1=111 b)f'(k), para x>=k se tiene que:, con k>0 f(x)=(x-k)(0)+x(3k+1)=(3k+1)x x<k: (k-x)(2x-2k)+(3k+1)x=2kx-2k^2-2x^2+2kx+(3k+1)x Entonces: f'(k) = 3k+1f'(k/2)=4k-4(x_0)+(3k+1)=2k+3k+1=5k+1entonces: f'(k)+f(k/2)=3k+1+5k+1=8k+2=162 Edited November 17, 2012 by funkemonks Link to comment Share on other sites More sharing options...
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now